Density functional studies of the electronic structure and adsorption at molybdenum oxide surfaces

نویسندگان

  • K. Hermann
  • M. Witko
  • A. Michalak
چکیده

The electronic structure and bonding at different oxygen sites of MoO3(0 1 0) and (1 0 0) surfaces is reviewed on the basis of ab initio density functional theory (DFT-LCGTO) cluster calculations. The clusters are chosen as ®nite sections of the ideal MoO3 surface where cluster embedding is achieved by bond saturation with hydrogen terminator atoms yielding clusters up to Mo7O30H18. Resulting charge density distributions and binding properties are analyzed by populations, bond orders, and electrostatic potential maps. Interatomic binding at the surface is determined by both ionic and covalent contributions with a clear distinction between terminal oxygens and different bridging surface oxygens. Electronic differences between the MoO3 (0 1 0) and (1 0 0) surfaces are found to be mainly due to the different atom arrangement while local atom charging and binding properties seem surface independent. The electronic surface parameters in ̄uence the behavior and reactions of adsorbed molecules as will be shown for H, OH, and C3H5 adsorbates. # 1999 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Relaxations of methylpyridinone tautomers at the C60 surfaces: DFT studies

Density functional theory (DFT) based calculations have been performed to examine the relaxations of tautomers of 4–hydroxy–6–methylpyridin–2(1H)–one (MPO), as a representative of pyridinone derivatives, at the fullerene (C60) surfaces. Optimized molecular properties including energies, dipole moments and atomic scale quadrupole coupling constants (CQ) have been e...

متن کامل

Comparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption

In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999